SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING #### PART 1 - GENERAL #### 1.1 DESCRIPTION A. This section describes the requirements for general-duty valves for domestic water and sewer systems. ### 1.2 RELATED WORK A. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING. #### 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturer's Literature and Data: - 1. Valves. - 2. All items listed in Part 2 Products. #### 1.4 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society for Testing and Materials (ASTM):A536-84(R 2004) Standard Specification for Ductile Iron Castings - C. American Society of Sanitary Engineering (ASSE) ASSE 1003-01 (R 2003)...Performance Requirements for Water Pressure Reducing Valves ASSE 1012-02.....Backflow Preventer with Intermediate Atmospheric Vent ASSE 1013-05......Reduced Pressure Principle Backflow Preventers and Reduced Pressure Fire Protection Principle Backflow Preventers D. International Code Council (ICC) IPC-06 (R 2007).....International Plumbing Code E. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS): SP-25-98......Standard Marking System for Valves, Fittings, Flanges and UnionsSP-67-02a (R 2004) Butterfly Valve of the Single flange Type (Lug Wafer) SP-70-06......Cast Iron Gate Valves, Flanged and Threaded Ends. | SP-72-99Ball Valves With Flanged or Butt Welding For | |--| | General Purpose | | SP-80-03Bronze Gate, Globe, Angle and Check Valves. | | SP-110-96Ball Valve Threaded, Socket Welding, Solder | | Joint. Grooved and Flared Ends | # 1.5 DELIVERY, STORAGE, AND HANDLING - A. Valves shall be prepared for shipping as follows: - 1. Protect internal parts against rust and corrosion. - 2. Protect threads, flange faces, grooves, and weld ends. - 3. Set angle, gate, and globe valves closed to prevent rattling. - 4. Set ball and plug valves open to minimize exposure of functional surfaces - 5. Set butterfly valves closed or slightly open. - 6. Block check valves in either closed or open position. - B. Valves shall be prepared for storage as follows: - 1. Maintain valve end protection. - 2. Store valves indoors and maintain at higher than ambient dew point temperature. - C. A sling shall be used for large valves. The sling shall be rigged to avoid damage to exposed parts. Hand wheels or stems shall not be used as lifting or rigging points. # PART 2 - PRODUCTS # 2.1 VALVES - A. Asbestos packing and gaskets are prohibited. - B. Bronze valves shall be made with dezincification resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc shall not be permitted. - C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied. - D. Exposed Valves over 65 mm or DN65 (2-1/2 inches) installed at an elevation over 12 feet shall have a chain-wheel attachment to valve hand-wheel, stem, or other actuator. - E. Ball valves, pressure regulating valves, gate valves, globe valves, and plug valves used to supply potable water shall meet the requirements of NSF 61. #### F. Shut-off: - 1. Cold, Hot and Re-circulating Hot Water: - a. 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-72, SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 150 psig and a CWP rating of 600 psig. The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be solder, - b. Less than 100 mm DN100 (4 inches): Butterfly shall have an iron body with EPDM seal and aluminum bronze disc. The butterfly valve shall meet MSS SP-67, type I standard. The butterfly valve shall have a SWP rating of 200 psig. The valve design shall be lug type suitable for bidirectional dead-end service at rated pressure. The body material shall meet ASTM A 536, ductile iron. - c. 100 mm (DN100) (4 inches) and larger: - 1) Class 125, OS&Y, Cast Iron Gate Valve. The gate valve shall meet MSS-SP-70 type I standard. The gate valve shall have a CWP rating of 200 psig. The valve materials shall meet ASTM A 126, grey iron with bolted bonnet, flanged ends, bronze trim, and solid wedge disc. The gate valve shall be gear operated for sizes under 200 mms or DN200 (8 inches) and crank operated for sizes 200 mms or DN200 (8 inches) and above - 2) Single flange, ductile iron butterfly valves: The single flanged butterfly valve shall meet the MSS SP-67 standard. The butterfly valve shall have a CWP rating of 200 psig. The butterfly valve shall be lug type, suitable for bidirectional dead-end service at rated pressure without use of downstream flange. The body material shall comply with ASTM A536 ductile iron. The seat shall be EPDM with stainless steel disc and stem. - 3) Grooved end, ductile iron butterfly valves. The grooved butterfly valve shall meet the MSS SP-67 standard. The grooved butterfly valve shall have a CWP rating of 200 psig. The valve materials shall be polyamide coated ductile iron conforming to ASTM A536 with two piece stainless steel stem, EPDM encapsulated ductile iron disc, and EPDM seal. The butterfly valve shall be gear operated 2. Reagent Grade Water: Valves for reagent grade, reverse osmosis, or deionized water service shall be ball type of same material as used for pipe. #### G. Balancing: - 1. Hot Water Re-circulating, 80 mm or DN80 (3 inches) and smaller manual balancing valve shall be of bronze body, brass ball construction with glass and carbon filled TFE seat rings and designed for positive shutoff. The manual balancing valve shall have differential pressure read-out ports across the valve seat area. The read out ports shall be fitting with internal EPT inserts and check valves. The valve body shall have 8 mm or DN8 NPT (4" NPT) tapped drain and purge port. The valves shall have memory stops that allow the valve to close for service and then reopened to set point without disturbing the balance position. All valves shall have calibrated nameplates to assure specific valve settings. - 2. Larger than 80 mm or DN80 (3 inches): Manual balancing valves shall be of heavy duty cast iron flanged construction with 125 psi flange connections. The flanged manual balancing valves shall have either a brass ball with glass and carbon filled TFE seal rings or fitted with a bronze seat, replaceable bronze disc with EPDM seal insert and stainless steel stem. The design pressure shall be 1207 kPa (175) at 250 deg F. # H. Check: - 1. Check valves less than 80 mm or DN80 (3 inches) and smaller) shall be class 125, bronze swing check valves with non metallic Buna-N disc. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 200 psig. The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B 62, solder joints, and PTFE or TFE disc. - 2. Larger than 100 mm or DN100 (4 inches and larger): - a. Check valves shall be class 125, iron swing check valve with lever and weight closure control. The check valve shall meet MSS SP-71 Type I standard. The check valve shall have a CWP rating of 200 psig. The check valve shall have a clear or full waterway body design with gray iron body material conforming to ASTM A 126, bolted bonnet, flanged ends, bronze trim. b. All check valves on the discharge side of submersible sump sumps shall have factory installed exterior level and weight with sufficient weight to prevent the check valve from hammering against the seat when the sump pump stops. #### I. Globe: - 1. 80 mm or DN80 (3 inches) or smaller: Class 150, bronze globe valve with non metallic disc. The globe valve shall meet MSS SP-80, Type 2 standard. The globe valve shall have a CWP rating of 300 psig. The valve material shall be bronze with integral seal and union ring bonnet conforming to ASTM B 62 with solder ends, copper-silicon bronze stem, TPFE or TFE disc, malleable iron hand wheel. - 2. Larger than 80 mm or DN80 (3 inches): Similar to above, except with cast iron body and bronze trim, class 125, iron globe valve. The globe valve shall meet MSS SP-85, Type 1 standard. The globe valve shall have a CWP rating of 200 psig. The valve material shall be gray iron with bolted bonnet conforming to ASTM A 126 with flanged ends, bronze trim, malleable iron handwheel. # PART 3 - EXECUTION #### 3.1 EXAMINATION - A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling. - B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations. - C. Threads on valve and mating pipe shall be examined for form and cleanliness. - D. Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material. Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage. - E. Do not attempt to repair defective valves; replace with new valves. # 3.2 VALVE INSTALLATION A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown. - B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings. - C. Valves shall be installed in horizontal piping with stem at or above center of pipe - D. Valves shall be installed in a position to allow full stem movement. - E. Check valves shall be installed for proper direction of flow and as follows: - 1. Swing Check Valves: In horizontal position with hinge pin level. # 3.3 ADJUSTING A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves shall be replaced if persistent leaking occurs. - - E N D - - -